lt

  • 关注
  • 短消息
  • 送银子
文章
355
评论
1554
推荐
247
收藏
3
社区会龄
8 年
个人网站
--
个人简介
还没有输入个人简介……
  • lt 3推荐

    一个markdown表格的建议

    我发现github的帖子里可以粘贴表格,比如 http://zero.sjeng.org/ 下方的html表格, ![enter image description here][1] 用ctrl+c复制后到 帖子里变成了markdown代码 ![enter image desc…...

  • lt 4推荐

    从一道小学数学题想到的

    一个长15厘米,宽9厘米的长方形,如果剪下一个最大的正方形,问剩下的图形周长是多少? a 30厘米 b 36厘米 c 48厘米 答: 如果以长方形的宽作为正方形的边长,从中间剪1刀,剩下一个长9厘米,宽6厘米的长方形,周长是30厘米。 仍然以长方形的宽作为正方形的边长,从2…...

  • lt 1推荐

    欧拉计划616题:创新数

    Creative numbers Problem 616 Alice plays the following game, she starts with a list of integers L and on each step she can either: •remov…...

  • lt 2推荐

    比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类!

    https://zhuanlan.zhihu.com/p/31749249 使用与AlphaGo Zero一模一样的方法(同样是MCTS+深度网络,实际还做了一些简化),它从零开始训练: •4小时就打败了国际象棋的最强程序Stockfish! •2小时就打败了日本将棋的最强程序…...

  • lt 1推荐

    alphago论文使用的围棋Tromp-Taylor规则

    The Logical Rules Go is played on a 19x19 square grid of points, by two players called Black and White. Each point on the grid may be colo…...

评论了

  • 今年 01-25 21:38

    简单的测试程序 def f(n): tn=[i*(i+1)//2 for i in range(1+int(math.sqrt(n*2)))] return sum([1 for i in tn for j in tn for k in tn if i+j+k==n]) >>> f(9) 7 >>> f(1000) 78

  • 今年 01-25 20:44

    利用这种穷举法做出了s(n)=60的解的和

  • 今年 01-25 19:56

    def get12(): r=[[3, 2], [5, 1], [7, 1], [13, 1]] s=[] for a0 in range(r[0][1]+1): for a1 in range(r[1][1]+1): for a2 in range(r[2][1]+1): for a3 in range(r[3][1]+1): tmp=r[0][0]**a0 * r[1][0]**a1 * r[2][0]**a2 * r[3][0]**a3+1 if(gen(tmp)==12):s.append(tmp) s.sort() return s 能计算s(n)=12

  • 今年 01-25 19:02

    但不是质因数的所有积都符合,那些符合任何2^x-1的都不是解,因为s(2^x)=x

  • 今年 01-25 18:42

    虽然不明白,但找到了一个规律。 所有匹配s(n)的解-1和2^-1有同样的质因数。例如s(n)=12 >>> [i for i in range(2,3000,2) if gen(i)==12] [14, 36, 40, 46, 66, 92, 106, 118, 196, 274, 316, 456, 586, 820, 1366] In[9]:= a={14, 36, 40, 46, 66, 92, 106, 118, 196, 274, 316, 456, 586, 820, 1366} Out[9]= {14, 36, 40, 46, 66, 92, 106, 118, 196, 274, 316, 456, 586, 820, 1366} In[10]:= FactorInteger[a-1] Out[10]= {{{13, 1}}, {{5, 1}, {7, 1}}, {{3, 1}, {13, 1}}, {{3, 2}, {5, 1}}, {{5, 1}, {13, 1}}, > {{7, 1}, {13, 1}}, {{3, 1}, {5, 1}, {7, 1}}, {{3, 2}, {13, 1}}, {{3, 1}, {5, 1}, {13, 1}}, > {{3, 1}, {7, 1}, {13, 1}}, {{3, 2}, {5, 1}, {7, 1}}, {{5, 1}, {7, 1}, {13, 1}}, > {{3, 2}, {5, 1}, {13, 1}}, {{3, 2}, {7, 1}, {13, 1}}, {{3, 1}, {5, 1}, {7, 1}, {13, 1}}} In[12]:= FactorInteger[2^12-1] Out[12]= {{3, 2}, {5, 1}, {7, 1}, {13, 1}} n=60 In[13]:= FactorInteger[2^60-1] Out[13]= {{3, 2}, {5, 2}, {7, 1}, {11, 1}, {13, 1}, {31, 1}, {41, 1}, {61, 1}, {151, 1}, {331, 1}, > {1321, 1}} In[4]:= FactorInteger[x-1] Out[4]= {{{61, 1}}, {{11, 1}, {13, 1}}, {{5, 2}, {7, 1}}, {{3, 1}, {61, 1}}, {{3, 2}, {5, 2}}, > {{7, 1}, {41, 1}}, {{5, 1}, {61, 1}}, {{5, 2}, {13, 1}}, {{3, 2}, {41, 1}}, > {{5, 1}, {7, 1}, {11, 1}}, {{13, 1}, {31, 1}}, {{7, 1}, {61, 1}}, {{3, 1}, {11, 1}, {13, 1}}, > {{3, 2}, {5, 1}, {11, 1}}, {{3, 1}, {5, 2}, {7, 1}}, {{13, 1}, {41, 1}}, {{3, 2}, {61, 1}}, > {{11, 1}, {61, 1}}, {{5, 1}, {11, 1}, {13, 1}}, {{5, 1}, {151, 1}}, {{13, 1}, {61, 1}}, > {{3, 1}, {7, 1}, {41, 1}}, {{3, 1}, {5, 1}, {61, 1}}, {{3, 1}, {5, 2}, {13, 1}}, > {{7, 1}, {11, 1}, {13, 1}}, {{5, 1}, {7, 1}, {31, 1}}, {{3, 1}, {5, 1}, {7, 1}, {11, 1}}, > {{3, 1}, {13, 1}, {31, 1}}, {{3, 1}, {7, 1}, {61, 1}}, {{3, 2}, {11, 1}, {13, 1}}, {{1321, 1}},