0推荐 收藏
2.9K阅读

## 微分流形与黎曼几何(英文版 第2版修订版)

William M. Boothby (作者)

￥59.00

### 出版信息

• #### 复分析：可视化方法

本书是复分析领域近年来产生了广泛影响的一本著作. 作者独辟蹊径，用丰富的图例展示各种概念、定理和证明思...

• #### 概率论沉思录（英文版）

本书将概率和统计推断融合在一起，用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域...

• #### 小平邦彦复分析（英文版）

本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论，强调几何观点，避免了一些拓扑学难点...

• #### 应用随机过程：概率模型导论（英文版•第11版）

本书是国际知名统计学家Sheldon M. Ross所著的关于基础概率理论和随机过程的经典教材，被加州大学伯克...

• #### 组合数学：专题、技术与算法（英文版）

这本优秀的组合数学教材是作者20多年研究和教学经验的结晶．全书分成初级篇和高级篇两个部分，共18章内容...

### 目录

PREFACE TO. THE REVISED SECOND EDITION xi
PREFACE TO THE SECOND EDITION xiii
PREFACE TO THE FIRST EDITION xv
I. Introduction to Manifolds
2.R~ and Euclidean Space 4
3.Topological Manifolds 6
4.Further Examples of Manifolds. Cutting and Pasting 11
5.Abstract Manifolds. Some Examples 14
II. Functions of Several Variables and Mappings
1.Differentiability for Functions of Several Variables 20
2.Differentiability of Mappings and Jacobians 25
3.The Space of Tangent Vectors at a Point of R" 29
4.Another Definition of Ta(R -) 32
5.Vector Fields on Open Subsets of R" 36
6.The Inverse Function Theorem 41
7.The Rank of a Mapping 46
III. Differentiable Manifolds and Submanifolds
1.The Definition of a Differentiable Manifold 52
2.Further Examples 59
3.Differentiable Functions and Mappings 65
4.Rank of a Mapping, Immersions 68
5.Submanifolds 74
6.Lie Groups 80
7.The Action of a Lie Group on a Manifold. Transformation Groups 87
8.The Action of a Discrete Group on a Manifold 93
9.Covering Manifolds 98
IV. Vector Fields on a Manifold
1.The Tangent Space at a Point of a Manifold 104
2.Vector Fields 113
3.One-Parameter and Local One-Parameter Groups Acting on a Manifold 1'
4.The Existence Theorem for Ordinary Differential Equations 127
5.Some Examples of One-Parameter Groups Acting on a Manifold 135
6.One-Parameter Subgroups of Lie Groups 142
7.The Lie Algebra of Vector Fields on a Manifold 146
8.Frobenius's Theorem 153
9.Homogeneous Spaces 160
V. Tensors and Tensor Fields on Manifolds
1.Tangent Covectors 171
Covectors on Manifolds 172
Covector Fields and Mappings 174
2.Bilinear Forms. The Riemannian Metric 177
3.Riemannian Manifolds as Metric Spaces 181
4.Partitions of Unity 186
Some Applications of the Partition of Unity 188
5.Tensor Fields 192
Tensors on a Vector Space 192
Tensor Fields 194
Mappings and Covariant Tensors 195
The Symmetrizing and Alternating Transformations 196
6.Multiplication of Tensors 199
Multiplication of Tensors on a Vector Space 199
Multiplication of Tensor Fields 201
Exterior Multiplication of Alternating Tensors 202
The Exterior Algebra on Manifolds 206
7.Orientation of Manifolds and the Volume Element 207
8.Exterior Differentiation 212
An Application to Frobenius's Theorem 216
VI. Integration on Manifolds
1.Integration in R" Domains of Integration 223
Basic Properties of the Riemann Integral 224
2.A Generalization to Manifolds 229
Integration on Riemannian Manifolds 232
3.Integration on Lie Groups 237
4.Manifolds with Boundary 243
5.Stokes's Theorem for Manifolds 251
6.Homotopy of Mappings. The Fundamental Group 258
Homotopy of Paths and Loops. The Fundamental Group 259
7.Some Applications of Differential Forms. The de Rham Groups 265
The Homotopy Operator 268
8.Some Further Applications of de Rham Groups 272
The de Rham Groups of Lie Groups 276
9.Covering Spaces and Fundamental Group 280
VII. Differentiation on Riemannian Manifolds
l.Differentiation of Vector Fields along Curves in Rn 289
The Geometry of Space Curves 292
Curvature of Plane Curves 296
2.Differentiation of Vector Fields on Submanifolds of R" 298
Formulas for Covariant Derivatives 303
Vxp Y and Differentiation of Vector Fields 305
3.Differentiation on Riemannian Manifolds 308
Constant Vector Fields and Parallel Displacement 314
4.Addenda to the Theory of Differentiation on a Manifold 316

The Curvature Tensor 316
The Riemannian Connection and Exterior Differential Forms 319
5.Geodesic Curves on Riemannian Manifolds 321
6.The Tangent Bundle and Exponential Mapping. Normal Coordinates 326
7.Some Further Properties of Geodesics 332
8.Symmetric Riemannian Manifolds 340
9.Some Examples 346
VIII. Curvature
1.The Geometry of Surfaces in E3 355
The Principal Curvatures at a Point of a Surface 359
2.The Gaussian and Mean Curvatures of a Surface 363
The Theorema Egregium of Gauss 366
3.Basic Properties of the Riemann Curvature Tensor 371
4.Curvature Forms and the Equations of Structure 378
5.Differentiation of Covariant Tensor Fields 384
6.Manifolds of Constant Curvature 391
Spaces of Positive Curvature 394
Spaces of Zero Curvature 396
Spaces of Constant Negative Curvature 397
REFERENCES 403
INDEX 41 1
• 这本书可以重印吗
VitalyR  发表于 2020-01-22 00:57:39
推荐
• 不能重印了，版权已经到期。

傅志红  发表于 2020-01-22 07:36:27