微分流形与黎曼几何(英文版 第2版修订版)
0推荐 收藏
2.9K阅读
图灵原版数学统计学系列

微分流形与黎曼几何(英文版 第2版修订版)

William M. Boothby (作者)
终止销售
这是一本非常好的微分流形入门书。全书从一些基本的微积分知识入手,然后一点点深入介绍,主要内容有:流形介绍、多变量函数和映射、微分流形和子流形、流形上的向量场、张量和流形上的张量场、流形上的积分法、黎曼流形上的微分法以及曲率。书后有难度适中的习题,全书配有很多精美的插图。
本书非常适合初学者阅读,可作为数学系、物理系、机械系等理工科高年级本科生和研究生的教材。
纸质书
¥59.00

其他购买方式?

出版信息

同系列书

目录

PREFACE TO. THE REVISED SECOND EDITION xi
PREFACE TO THE SECOND EDITION xiii
PREFACE TO THE FIRST EDITION xv
I. Introduction to Manifolds
l.Preliminary Comments on R" 1
2.R~ and Euclidean Space 4
3.Topological Manifolds 6
4.Further Examples of Manifolds. Cutting and Pasting 11
5.Abstract Manifolds. Some Examples 14
II. Functions of Several Variables and Mappings
1.Differentiability for Functions of Several Variables 20
2.Differentiability of Mappings and Jacobians 25
3.The Space of Tangent Vectors at a Point of R" 29
4.Another Definition of Ta(R -) 32
5.Vector Fields on Open Subsets of R" 36
6.The Inverse Function Theorem 41
7.The Rank of a Mapping 46
III. Differentiable Manifolds and Submanifolds
1.The Definition of a Differentiable Manifold 52
2.Further Examples 59
3.Differentiable Functions and Mappings 65
4.Rank of a Mapping, Immersions 68
5.Submanifolds 74
6.Lie Groups 80
7.The Action of a Lie Group on a Manifold. Transformation Groups 87
8.The Action of a Discrete Group on a Manifold 93
9.Covering Manifolds 98
IV. Vector Fields on a Manifold
1.The Tangent Space at a Point of a Manifold 104
2.Vector Fields 113
3.One-Parameter and Local One-Parameter Groups Acting on a Manifold 1'
4.The Existence Theorem for Ordinary Differential Equations 127
5.Some Examples of One-Parameter Groups Acting on a Manifold 135
6.One-Parameter Subgroups of Lie Groups 142
7.The Lie Algebra of Vector Fields on a Manifold 146
8.Frobenius's Theorem 153
9.Homogeneous Spaces 160
V. Tensors and Tensor Fields on Manifolds
1.Tangent Covectors 171
Covectors on Manifolds 172
Covector Fields and Mappings 174
2.Bilinear Forms. The Riemannian Metric 177
3.Riemannian Manifolds as Metric Spaces 181
4.Partitions of Unity 186
Some Applications of the Partition of Unity 188
5.Tensor Fields 192
Tensors on a Vector Space 192
Tensor Fields 194
Mappings and Covariant Tensors 195
The Symmetrizing and Alternating Transformations 196
6.Multiplication of Tensors 199
Multiplication of Tensors on a Vector Space 199
Multiplication of Tensor Fields 201
Exterior Multiplication of Alternating Tensors 202
The Exterior Algebra on Manifolds 206
7.Orientation of Manifolds and the Volume Element 207
8.Exterior Differentiation 212
An Application to Frobenius's Theorem 216
VI. Integration on Manifolds
1.Integration in R" Domains of Integration 223
Basic Properties of the Riemann Integral 224
2.A Generalization to Manifolds 229
Integration on Riemannian Manifolds 232
3.Integration on Lie Groups 237
4.Manifolds with Boundary 243
5.Stokes's Theorem for Manifolds 251
6.Homotopy of Mappings. The Fundamental Group 258
Homotopy of Paths and Loops. The Fundamental Group 259
7.Some Applications of Differential Forms. The de Rham Groups 265
The Homotopy Operator 268
8.Some Further Applications of de Rham Groups 272
The de Rham Groups of Lie Groups 276
9.Covering Spaces and Fundamental Group 280
VII. Differentiation on Riemannian Manifolds
l.Differentiation of Vector Fields along Curves in Rn 289
The Geometry of Space Curves 292
Curvature of Plane Curves 296
2.Differentiation of Vector Fields on Submanifolds of R" 298
Formulas for Covariant Derivatives 303
Vxp Y and Differentiation of Vector Fields 305
3.Differentiation on Riemannian Manifolds 308
Constant Vector Fields and Parallel Displacement 314
4.Addenda to the Theory of Differentiation on a Manifold 316

The Curvature Tensor 316
The Riemannian Connection and Exterior Differential Forms 319
5.Geodesic Curves on Riemannian Manifolds 321
6.The Tangent Bundle and Exponential Mapping. Normal Coordinates 326
7.Some Further Properties of Geodesics 332
8.Symmetric Riemannian Manifolds 340
9.Some Examples 346
VIII. Curvature
1.The Geometry of Surfaces in E3 355
The Principal Curvatures at a Point of a Surface 359
2.The Gaussian and Mean Curvatures of a Surface 363
The Theorema Egregium of Gauss 366
3.Basic Properties of the Riemann Curvature Tensor 371
4.Curvature Forms and the Equations of Structure 378
5.Differentiation of Covariant Tensor Fields 384
6.Manifolds of Constant Curvature 391
Spaces of Positive Curvature 394
Spaces of Zero Curvature 396
Spaces of Constant Negative Curvature 397
REFERENCES 403
INDEX 41 1
  • 这本书可以重印吗
    VitalyR  发表于 2020-01-22 00:57:39
    推荐
    • 不能重印了,版权已经到期。

      傅志红  发表于 2020-01-22 07:36:27