哈代数论(英文版 第6版)
3推荐 收藏
4.1K阅读
图灵原版数学统计学系列

哈代数论(英文版 第6版)

终止销售
本书是数论领域的一部传世名著,成书于作者在牛津大学、剑桥大学等学校授课的讲义. 书中从各个不同角度对数论进行了阐述,内容包括素数、无理数、同余、费马定理、连分数、不定式、二次域、算术函数、分化等. 新版修订了每章末的注解,简要介绍了数论最新的发展;增加了一章讲述椭圆曲线,这是数论中最重要的突破之一. 还列出进一步阅读的文献.
本书适合数学专业本科生、研究生和教师用作教材或参考书,也适合对数论感兴趣的专业人士阅读参考.

纸质书
¥59.00

其他购买方式?

出版信息

  • 书  名哈代数论(英文版 第6版)
  • 系列书名图灵原版数学统计学系列
  • 执行编辑关于本书的内容有任何问题,请联系 傅志红
  • 出版日期2009-10-26
  • 书  号978-7-115-21427-0
  • 定  价59.00 元
  • 页  数640
  • 开  本16开
  • 出版状态终止销售
  • 原书名An Introduction to the Theory of Numbers
  • 原书号978-0-19-921985-8

同系列书

目录

Foreword by Andrew Wiles v
Preface to the sixth edition vn
Preface to the fifih edition viii
Preface to the first edition ix
Remarks on notation xl
I. THE SERIES OF PRIMES (1) 1
1.1. Divisibility of integers 1
1.2. Prime numbers 2
1.3. Statement of the fundamental theorem of arithmetic 3
1.4. The sequence of primes 4
1.5. Some questions concerning primes 6
1.6. Some notations 7
1.7. The logarithmic function 9
1.8. Statement of the prime number theorem 10
II. THE SERIES OF PRIMES (2) 14
2.1. First proof of Euclid's second theorem 14
2.2. Further deductions from Euclid's argument 14
2.3. Primes in certain arithmetical progressions 15
2.4. Second proof of Euclid's theorem 17
2.5. Fermat's and Mersenne's numbers 18
2.6. Third proof of Euclid's theorem 20
2.7. Further results on formulae for primes 21
2.8. Unsolved problems concerning primes 23
2.9. Moduli of integers 23
2.10. Proof of the fundamental theorem or arithmetic 25
2.11. Another proof of the fundamental theorem 26
III. FAREY SERIES AND A THEOREM OF MINKOWSKI 28
3.1. The definition and simplest properties of a Farey series 28
3.2. The equivalence of the two characteristic properties 29
3.3. First proof of Theorems 28 and 29 30
3.4. Second proof of the theorems 31
3.5. The integral lattice 32
3.6. Some simple peoperties of the fundamental lattice 33
3.7. Third proof of Theorems 28 and 29 35
3.8. The Farev dissection of the continuum 36
3.9. A theorem of Minkowski 37
3.10 Proof of Minkowski's theorem 39
3.11. Developments of Theorem 37 40
IV. IRRATIONAL NUMBERS 45
4.1. Some generalities 45
4.2. Numbers known to be irrational 46
4.3. The theorem of Pythagoras and its generalizations 47
4.4. The use of the fundamental theorem in the proofs of Theorems 43-45 49
4.5. A historical digression 3o
4.6. Geometrical proof of the irrationality of √5 52
4.7. Some more irrational numbers 53
V. CONGRUENCES AND RESIDUES 57
5.1. Highest common divisor and least common multiple 57
5.2. Congruences and classes of residues 58
5.3. Elementary orooerties of congruences 60
5.4. Linear congruences 60
5.5. Euler's function φ(m) 63
5.6. Aoolications of Theorems 59 and 61 to trigonometrical sums 65
5.7. A general principle 70
5.8. Construction of the regular polygon of 17 sides 71
VI. FFRMAT's THEOREM AND ITS CONSEOUENCES 78
6.1. Fermat's theorem 78
6.2. Some properties of binomial coefficients 79
6.3. A second proof of Theorem 72 81
6.4. Proof of Theorem 22 82
6.5. Quadratic residues 83
6.6. Soecial cases of Theorem 79: Wilson's theorem 85
6.7. Elementary properties of quadratic residues and non-residues 87
6.8. The order of a (mod m) IslS
6.9. The converse of Fermat's theorem 89
6.10. Divisibility of 2P- 1 _ 1 by p2 91
6.11. Gauss's lemma and the quadratic character of 2 92
6.12. The law of reciprocity 95
6.13. Proof of the law of reciprocity 97
6.14. Tests for orimalitv 98
6.15. Factors of Mersenne numbers; a theorem of Euler 100
VII. GENERAL PROPERTIES OF CONGRUENCES 103
7.1. Roots of congruences 103
7.2. Integral polynomials and identical congruences 103
7.3. Divisibility of polynomials (mod m) 105
7.4. Roots of c~nm'uences to a orime modulus 106
7.5. Some applications of the general theorems 108
7.6. Lagrange's proof of Fermat's and Wilson's theorems 110
7.7. The residue of { ~ (p - 1 ) }! 111
7.8. A theorem of Wolstenholme 112
7.9. The theorem of von Staudt 115
7.10. Proof of von Staudt's theorem 116
VIII. CONGRUENCES TO COMPOSITE MODULI 120
8.1. Linear congruences 120
8.2. Congruences of higher degree 122
8.3. Congruences to a orime-oower modulus 123
8.4. Examoles 125
8.5. Bauer's identical congruence 126
8.6. Bauer's congruence: the case p=2 129
8.7. A theorem of Leudesdorf 130
8.8. Further consequences of Bauer's theorem 132
8.9. The residues of 2P-1 and (p - 1)! to modulus p2 135
IX. THE REPRESENTATION OF NUMBERS BY DECIMALS 138
9.1. The decimal associated with a given number 138
9.2. Terminating and recurring decimals 141
9.3. Representation of numbers in other scales 144
9.4. Irrationals defined by decimals 145
9.5. Tests for divisibility 146
9.6. Decimals with the maximum period 147
9.7. Bachet's problem of the weights 149
9.8. The game of Nim 151
9.9. Integers with missing digits 154
9.10. Sets of measure zero 155
9.11. Decimals with missing digits 157
9.12. Normal numbers 158
9.13. Proof that almost all numbers are normal 160
X. CONTINUED FRACTIONS 165
10.1. Finite continued fractions 165
10.2. Convements to a continued fraction 166
10.3. Continued fractions with positive quotients 168
10.4. Simple continued fractions 169
10.5. The representation of an irreducible rational fraction by a simplecontinued fraction 170
10.6. The continued fraction algorithm and Euclid's algorithm 172
10.7. The difference between the fraction and its convergents 175
10.8. Infinite simple continued fractions 177
10.9. The representation of an irrational number by an infinitecontinued fraction 178
10.10. A lemma 180
10.11. Equivalent numbers 181
10.12. Periodic continued fractions 184
10.13. Some soecial Quadratic surds 187
10.14. The series of Fibonacci and Lucas 190
10.15. Approximation by convergents 194
XI. APPROXIMATION OF IRRATIONALS BY RATIONALS 198
11.1. Statement of the oroblem 198
11.2. Generalities concerning the problem 199
11.3. An argument of Dirichlet 201
11.4. Orders of aporoximation 202
11.5. Aloohrnie nncl transcendental numbers 203
11.6. The existence of transcendental numbers 205
11.7. Liouville's theorem and the construction of transcendental numbers 206
11.8. The measure of the closest approximations to an arbitrary irrational 208
11.9. Another theorem concemin~ the conver~ents to a continued fraction 210
11.10. Continued fractions with bounded quotients 212
11.11. Further theorems concerning approximation 216
11.12. Simultaneous approximation 217
11.13. The transcendence of e 218
11.14. The transcendence of π 223
XlI. THE FUNDAMENIAL THEOREM OF ARITHMETIC INk( 1 ), k (i), AND k (O) 229
12.1. Algebraic numbers and integers 229
12.2. The rational integers, the Gaussian integers, and the integers of k(p) 230
12.3. Euclid's algorithm 231
12.4. Aoolication of Euclid's algorithm to the fundamental theorem in k(1) 232
12.5. Historical remarks on Euclid's algorithm and the fundamental theorem 234
12.6. Prooerties of the Gaussian integers 235
12.7. Primes in k(i) 236
19 R The fi~ndnmental theorem of arithmetic in k(i) 238
12.9. The integers of k(p) 241
XIII. SOME DIOPHANTINE EQUATIONS 245
13.1. Fermat's last theorem 245
1 3_2. The eauation xz 4- vz = zz 245
13.3. The equation x4 -t- y4 = z4 247
13.4. The equation x3 + y3 = z3 248
13.5. The equation x3 +y3 =3z3 253
13.6. The exoression of a rational as a sum of rational cubes 254
13.7. The equation x3 +y3 +z3 =t3 257
XIV. OUADRATIC FIELDS (1) 264
14.1. Algebraic fields 264
14.2. Algebraic numbers and integers: orimitive polynomials 265
14.3. The general quadratic field k(√m) 267
14.4. Unities and orimes 268
14.5. The unities of k(√2) 270
14.6. Fields in which the fundamental theorem is false 273
14.7. Comnlex Euclidean fields 274
14.8. Real Euclidean fields 276
14.9. Real Euclidean fields (continued) 279
XV. OUADRATIC FIELDS (2) 283
15.1. The orimes of k(i) 283
15.2. Fermat's theorem in k(i) 285
15.3. The primes of k (p) 286
15.4. The primes of k(√2) and k(√5) 287
15.5. Lucas's test for the primality of the Mersenne number M4n+3 290
15.6. General remarks on the arithmetic of quadratic fields 293
15.7. Ideals in a quadratic field 295
15.8. Other fields 299
XVI. THE ARITHMETICAL FUNCTIONS Ф(n),μ(n), d(n), σ(n), r(n) 302
16.1. The function Ф(n) 302
16.2. A further proof of Theorem 63 303
16.3. The Mrbius function 304
16.4. The Mrbius inversion formula 305
16.5. Further inversion formulae 307
16.6. Evaluation of Ramanuian's sum 308
16.7. The functions d(n) and crk (n) 310
16.8. Perfect numbers 311
16.9. The function r(n) 313
16.10. Proof of the formula for r(n) 315
XVII. GENERATING FUNCTIONS OF ARITHMETICAL FUNCTIONS 318
17.1. The generation of arithmetical functions by means of Dirichlet series 318
17.2. The zeta function 320
17.3. The behaviour of ξ(s) when s→1 321
17.4. Multiplication of Dirichlet series 323
17.5. The generating functions of some special arithmetical functions 32~
17.6. The analytical interpretation of the M6bius formula 328
17.7. The function A(n) 331
17.8. Further examples of generating functions 334
17.9. The generating function of r(n) 337
17.10. Generating functions of other types 338
XVIII. THE ORDER OF MAGNITUDE OF ARITHMETICAL FUNCTIONS 342
18.1. The order of d(n) 342
18.2. The average order of d(n) 347
18.3. The order of σ(n) 350
18.4. The order of Ф(n) 352
18.5. The average order of Ф(n) 353
18.6. The number of squarefree numbers 355
18.7. The order of σ(n) 356
XIX. PARTITIONS 361
19.1. The general problem of additive arithmetic 361
19.2. Partitions of numbers 361
19.3. The generating function ofp(n) 362
19.4. Other generating functions 365
19.5. Two theorems of Euler 366
19.6. Further algebraical identities 369
19.7. Another formula for F(x) 371
19.8. A theorem of Jacobi 372
19.9. Special cases of Jacobi's identity 375
19.10. Applications of Theorem 353 378
19.11. Elementary proof of Theorem 358 379
19.12. Congruence properties of p(n) 380
19.13. The Rogers-Ramanujan identities 383
19.14. Proof of Theorems 362 and 363 386
19.15. Ramanujan's continued fraction 389
XX. THE REPRESENTATION OF A NUMBER BY TWO OR FOUR SQUARES 393
20.1. Waring's problem: the numbers g(k) and G(k) 393
20.2. Squares 395
20.3. Second proof of Theorem 366 395
20,4. Third and fourth proofs of Theorem 366 397
20.5. The four-square theorem 399
20.6. Quaternions 401
20.7. Preliminary theorems about integral quatemions 403
20.8. The highest common fight-hand divisor of two quatemions 405
20.9. Prime quatemions and the proof of Theorem 370 407
20.10. The values of g(2) and G(2) 409
20.11. Lemmas for the third proof of Theorem 369 410
20.12. Third proof of Theorem 369: the number of representations 411
20.13. Representations by a larger number of squares 415
XXI. REPRESENTATION BY CUBES AND HIGHER POWERS 419
21.1. Biquadrates 419
21.2. Cubes: the existence of G(3) and g(3) 420
21.3. A bound for g(3) 422
21.4. Higher powers 424
21.5. A lower bound for g(k) 425
21.6. Lower bounds for G(k) 426
21.7. Sums affected with signs: the number v(k) 431
21.8. Upper bounds for v(k) 433
21.9. The problem of Prouhet and Tarry: the number P(k,j) 435
21.10. Evaluation of P(k,j) for particular k andj 437
21.11. Further problems of Diophantine analysis 440
XXII. THE SERIES OF PRIMES (3) 451
22.1. The functions 0 (x) and $ (x) 451
22.2. Proof that 0 (x) and ~ (x) are of order x 453
22.3. Bertrand's postulate and a 'formula' for primes 455
22.4. Proof of Theorems 7 and 9 458
22.5. Two formal transformations 460
22.6. An important sum 461
22.7. The sum 12p~ 1 and the product FI (1 - p- 1 ) 464
22.8. Mertens's theorem 466
22.9. Proof of Theorems 323 and 328 469
22.10. The number of prime factors of n 471
22.11. The normal order of to (n) and f2 (n) 473
22.12. A note on round numbers 476
22.13. The normal order of d(n) 477
22.14. Selberg's theorem 478
22.15. The functions R (x) and V (ξ) 481
22.16. Completion of the proof of Theorems 434, 6, and 8 486
22.17. Proof of Theorem 335 489
22.18. Products of k prime factors 490
22.19. Primes in an interval 494
22.20. A conjecture about the distribution of prime pairs p, p + 2 495
XXIII. KRONECKER'S THEOREM 501
23.1. Kronecker's theorem in one dimension 501
23.2. Proofs of the one-dimensional theorem 502
23.3. The problem of the reflected ray 505
23.4. Statement of the general theorem 508
23.5. The two forms of the theorem 510
23.6. An illustration 512
23.7. Lettenmeyer's proof of the theorem 512
23.8. Estermann's proof of the theorem 514
23.9. Bohr's proof of the theorem 517
23.10. Uniform distribution 520
XXIV. GEOMETRY OF NUMBERS 523
24.1. Introduction and restatement of the fundamental theorem 523
24.2. Simple applications 524
24.3. Arithmetical proof of Theorem 448 527
24.4. Best possible inequalities 529
24.5. The best possible inequality for ~2 + 02 530
24.6. The best possible inequality for 1~171 532
24.7. A theorem concerning non-homogeneous forms 534
24.8. Arithmetical proof of Theorem 455 536
24.9. Tchebotaref's theorem 537
24.10. A converse of Minkowski's Theorem 446 540
XXV. ELLIPTIC CURVES 549
25.1. The congruent number problem 549
25.2. The addition law on an elliptic curve 550
25.3. Other equations that define elliptic curves 556
25.4. Points of finite order 559
25.5. The group of rational points 564
25.6. The group of points modulo p. 573
25.7. Integer points on elliptic curves 574
25.8. "['he L-series of an elliptic curve 578
25.9. Points of finite order and modular curves 582
25.10. Elliptic curves and Fermat's last theorem 586
APPENDIX 593
1. Another formula forpn 593
2. A generalization of Theorem 22 593
3. Unsolved problems concerning primes 594
A LIST OF BOOKS 597
INDEX OF SPECIAL SYMBOLS AND WORDS 601
INDEX OF NAMES 605
GENERAL INDEX 611
暂无评论!