#### 黄志斌

231

782

2593

249

6 年

www.cnblogs.com/skyivben/ weibo.com/skyivben

• 5推荐

## 614. 特殊分拆２

题目 Problem 614: Special partitions 2 An integer partition of a number n is a way of writing n as a sum of positive integers. Partitions …...

• 3推荐

## 618. 素因子和固定的数

题目 Problem 618: Numbers with a given prime factor sum Consider the numbers 15, 16 and 18: 15 = 3×5 and 3+5 = 8. 16 = 2×2×2×2 and 2+2+2+2…...

• 4推荐

## 615. 第一百万个拥有至少一百万个素因数的数

题目 Problem 615. The millionth number with at least one million prime factors Consider the natural numbers having at least 5 prime factor…...

• 3推荐

## 617. 镜像幂序列

题目 Problem 617. Mirror Power Sequence For two integers n, e &gt; 1, we define a(n,e)-MPS (Mirror Power Sequence) to be an infinite seque…...

• 3推荐

## 616. 有创造力的数

题目 Problem 616: Creative numbers Alice plays the following game, she starts with a list of integers L and on each step she can either: …...

• 4推荐

## 613. 毕达哥拉斯的蚂蚁

题目 Problem 613. Pythagorean Ant Dave is doing his homework on the balkony and, prepairing a presentation about Pythogorean triangles, ha…...

• 4推荐

## 612. 朋友数

题目 Problem 612. Friend numbers Let&#39;s call two numbers friend numbers if their representation in base 10 has at least one common digi…...

• 4推荐

## 579. 格点立方体上的格点

题目 Problem 579. Lattice points in lattice cubes A lattice cube is a cube in which all vertices have integer coordinates. Let C(n) be the…...

• 4推荐

## 610. 罗马数字（II）

题目 Prolem 610. Roman Numerals II A random generator produces a sequence of symbols drawn from the set {I, V, X, L, C, D, M, #}. Each ite…...

• 4推荐

## 089. 罗马数字

题目 Problem 89. Roman numerals For a number written in Roman numerals to be considered valid there are basic rules which must be followed…...

• 5推荐

## 609. π 序列

题目 Problem 609. π sequences For every n ≥ 1 the prime-counting function π(n) is equal to the number of primes not exceeding n. E.g. π(6)…...

• 5推荐

## 591. 二次整数最佳逼近

题目 Problem 591: Best Approximations by Quadratic Integers Given a non-square integer d, any real x can be approximated arbitrarily close…...