这本书大约写了10个月的时间,如果一定要自己评价一下这本书,只能说还行。这本书基本达到了写作目标:   1. 帮助刚毕业的学生迅速了解如何将他们学到的理论用于实际   2. 帮助程序员迅速将他们的编程能力应用到推荐系统中来   3. 强调数据分析的重要性,淡化算法   4. 运用多种评测方法,强调全面评测的重要性      不过本书也有一些遗憾,如果将来会再版这本书,可以修正这些遗憾:   1. 推荐系统和搜索引擎不同,他还没有一个统一的应用场景,因此不同网站的推荐系统都有不同的特色。但是因为我主要从事视频推荐方面的研究,对于电商或者LBS,社交推荐方面的推荐还缺乏深刻的认识,只做过一些理论研究,缺乏实际动手分析的经验,所以这方面的内容相对欠缺。   2. 对并行化和大数据说的不多。本书提到的方法都是可以用于大数据,很容易通过Map-Reduce或者MPI并行化。但是本书对这些方法如何并行化说的也不多。这主要是我自认为还不能算这方面的专家,写出来可能会贻笑大方。   3. 缺乏统一的理论框架。这其实不能算本书的缺点,因为整个推荐系统看起来,除了协同过滤,很多其他算法的理论框架都不完善。此外,写这本书时的立意是要让大家看完之后觉得,靠,推荐算法就这么简单啊。所以没有运用理论化堆公式的写法。不过,如果能用简单的语言将理论的问题说清楚,那就更NB了。不过我目前还没有达到这样的功力。      最后,看到很多人说这本书和我的博士论文很像。其实这本书只有半章和我的博士论文相关,其他部分都是博士论文中完全没有的,嘿嘿。